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ABSTRACT: The National Center for Atmospheric Research (NCAR) and Montana State University jointly developed
water vapor micropulse differential absorption lidars (MPDs) that are a significant advance in eye-safe, unattended, lidar-based
water vapor remote sensing. MPD is designed to provide continuous vertical water vapor profiles with high vertical (150 m) and
temporal resolution (5 min) in the lower troposphere. This study aims to investigate MPD observation impacts and the scientific
significance of MPDs for convective weather analyses and predictions using observation system simulation experi-
ments (OSSEs). In this study, the Data Assimilation Research Testbed (DART) and the Advanced Research version
of theWeather Research and Forecasting (WRF-ARW)Model are used to conduct OSSEs for a case study of a mesoscale con-
vective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment. A poor-performing
control simulation that was drawn from a 40-member ensemble at 3-km resolution is markedly improved by assimilation of sim-
ulated observations drawn from a more skillful simulation that served as the nature run at 1-km resolution. In particular, assimi-
lating surface observations corrected surface warm front structure errors, while MPD observations remedied errors in low- to
midlevel moisture ahead of the MCS. Collectively, these analyses changes led to markedly improved short-term predictions of
convection initiation, evolution, and precipitation of the MCS in the simulations on 15 July 2015. For this case study, the OSSE
results indicate that a more dense MPD network results in better prediction performance for convective precipitation while de-
grading light precipitation prediction performance due to an imbalance of the analysis at large scales.

KEYWORDS: Deep convection; Lidars/Lidar observations; Profilers, atmospheric; Remote sensing;
Numerical weather prediction/forecasting; Data assimilation

1. Introduction

Numerical weather prediction (NWP) models have ad-
vanced dramatically over the last two decades, due in part to
continuous development of non-hydrostatic dynamics, more
accurate representation of physical processes and data assimi-
lation (DA) at convection-permitting resolutions (e.g., Bauer
et al. 2015; Clark et al. 2016; Zhang et al. 2019). On the other
hand, high-impact weather forecasting skill, including quantita-
tive precipitation forecasting (QPF), has shown relatively slow
improvement over the same period (Cherubini et al. 2002;
Charba et al. 2003; Ralph et al. 2003; Morss and Ralph 2007;
Brennan et al. 2008; Ralph et al. 2010; Schumacher and Davis
2010; Novak et al. 2011; Buehner and Jacques 2020). One of the
reasons for relatively poor QPF skill is the lack of suitable ther-
modynamic profiling observations in the lower troposphere
where nearly all high-impact weather occurs. This leads to diffi-
culty capturing details of the rapidly changing water vapor and
temperature, and their gradient in the lower atmosphere, which
hinders the analysis of convective-scale weather systems and
their environments (Dee et al. 2011; Wulfmeyer et al. 2015).

The sensitivity of atmospheric instability to water vapor is a
critical factor for accurate prediction of convection initiation
and evolution (Crook 1996; Ducrocq et al. 2002; Richard et al.

2007; Keil et al. 2008; Dierer et al. 2009; Wulfmeyer et al. 2011).
It has been shown that small changes in the amount of water va-
por within or just above the atmospheric boundary layer can de-
termine whether or not convection initiates (Weckwerth 2000).
In this context, several National Research Council reports noted
that one of the significant gaps in observational capabilities for
convective weather forecasting is the lack of sufficient water va-
por measurements in the boundary layer (National Research
Council 2009, 2010, 2012, 2018). To build observing networks
that can fill the gap for both operational NWP and research pur-
poses, the capabilities that water vapor observing instruments
should possess include the following: (i) unattended continuous
operations, (ii) accurate measurements with high vertical and
temporal resolution, and (iii) low cost of purchasing and
maintaining instruments (Crook 1996; Weckwerth et al. 1999;
Weckwerth 2000; Lin et al. 2011; Turner and Löhnert 2014;
Wulfmeyer et al. 2015; Weckwerth et al. 2016).

Weckwerth et al. (2016) summarizes detailed characteristics
of water vapor profiling instruments such as radiosonde, mi-
crowave radiometer profiler (MWRP), atmospheric emitted
radiance interferometer (AERI), and Raman lidar that that
have been used for operational forecasting or atmospheric re-
search. Unfortunately, the existing network of observing in-
struments have difficulty in achieving all of the measurement
requirements simultaneously. For example, radiosondes typi-
cally require manual launching and are relatively costly.
Furthermore, due to the low spatiotemporal resolution, radio-
sonde observations do not typically represent the mesoscale
environment needed to improve forecasts of convective events.
Some of the instruments also require periodic calibration which
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presents a challenge to achieving unattended operation
(MWRP, Raman lidars) or they are limited by a coarse
vertical resolution [MWRP, AERI above ∼1 km above
ground level (AGL)].

As a complement to the existing water vapor profiling
instruments, the National Center for Atmospheric Research
(NCAR) and Montana State University (MSU) have devel-
oped an advanced lidar-based remote sensing system for profil-
ing water vapor in the lower atmosphere, called micropulse
differential absorption lidar (MPD). The MPD satisfies the
aforementioned requirements in a strategic way by utilizing
low-cost, high-reliability lasers in a micropulse system with the
differential absorption technique (Spuler et al. 2015). The
MPD shows significant consistency with radiosondes and better
resolves the vertical structure of moisture compared to AERI
and MWRP (Weckwerth et al. 2016) although AERI and
MWRP have the advantage of measuring temperature profiles
in addition to water vapor profiles (Knuteson et al. 2004a,b;
Turner and Löhnert 2014). In particular, the MPD can measure
low-level moisture profiles with a uniform resolution up to
3.5 and 4.5 km AGL at day and night, respectively, while the
vertical resolution of AERI decreases rapidly with altitude
above 1-km height (Weckwerth et al. 2016). This advantage of
MPD enhances the detection capabilities of elevated moist layers
which play an important role for nocturnal convection initiation
and evolution. The MPD does not require attended operation
for continuous calibration and that is a significant benefit for op-
erational use compared to Raman lidar.

Several previous studies have demonstrated that water
vapor profiling data can improve short-term convective-scale
prediction of various features (Wulfmeyer et al. 2006; Kawabata
et al. 2007; Hitchcock et al. 2016; Degelia et al. 2019; Thundathil
et al. 2021). For example, Hu et al. (2019) investigated the
impact of assimilating thermodynamic profiles of AERI and
horizontal wind retrievals of Doppler wind lidar (DWL), and
found that AERI thermodynamic profiles had more positive
impact on short-term probabilistic forecasts of convection
initiation and the early evolution of supercell thunderstorms
than the DWL for that case. Coniglio et al. (2019) showed
that assimilation of DWL wind retrievals and AERI tempera-
ture and moisture profiles from a single profiling system often
led to improvement in 1–6-h precipitation forecasts in terms
of a neighborhood ensemble probability over the verification
domain. Degelia et al. (2019) evaluated the impact of four
AERI water vapor profiles deployed approximately 100 km
apart during the Plains Elevated Convection At Night (PECAN;
Geerts et al. 2017) field campaign and showed a positive impact
on the analysis and forecast of deep moist convection for a
nocturnal convection initiation case. Following the findings of
Degelia et al. (2019), Degelia et al. (2020) expanded AERI
DA experiments using 13 nocturnal convection initiation
cases during the PECAN field campaign and confirmed sys-
tematic improvements in terms of precipitation and convec-
tion initiation forecasts and related various contingency
metrics by assimilating AERIs. Chipilski et al. (2020, 2022)
found convective-scale prediction benefits from assimilating
AERI thermodynamic profiles at a high temporal frequency.
Thundathil et al. (2021) assimilated water vapor profiles from

differential absorption lidar and temperature profiles from
Raman lidar from a single site using the hybrid ensemble DA
system and showed improvement in planetary boundary layer
height, as well as thermodynamic fields, for a clear sky case
compared to the result from the three-dimensional variational
DA system (3DVAR). Despite these successes, considerable
uncertainty remains on the optimal use of water vapor profil-
ing systems when deployed in a nationwide network, similar
to the operational radiosonde network. In addition, the fixed
small number of observing sites in previous studies limits
finding an optimal network design to maximize the value of
thermodynamic profiling observations.

In this study, based on the encouraging capability of the
MPD to continuously measure the time-height characteristics
of water vapor profiles in the lower atmosphere, we first ex-
plore the potential impact of a network of MPD profilers on
analyses and predictions of a convective weather event via ob-
serving system simulation experiments (OSSEs). The objec-
tive of OSSEs is to estimate the unknown potential impact
of new observations on weather and climate in addition to
the existing observing systems (Masutani et al. 2007, 2010).
OSSEs have been applied to numerous convective scale pre-
diction and assimilation studies (Hartung et al. 2011; Zhang
et al. 2016; Hu et al. 2017; Liu et al. 2019). Because radio-
sondes provide profiling data that are routinely assimilated by
operational weather prediction centers, we will evaluate the
impact of MPDs being deployed at the current operational ra-
diosonde sites and verify that MPD can complement the radio-
sondes. Furthermore, we will investigate spacing considerations
for an MPD network configuration to demonstrate the potential
of high-quality MPD measurements as a part of a nation-
wide network of thermodynamic profiling instruments.

The paper is organized as follows. Section 2 describes the
MPD observation system in detail. In section 3, we describe
the OSSE framework including the model configuration, the
DA method, and the experimental configuration. Section 4
describes the OSSE results for a PECAN nocturnal convec-
tion system, and section 5 shows the OSSE results for various
MPD network designs. Section 6 compares OSSE DA and
real MPD DA results from a single observing site. Section 7
summarizes the results and discusses future work.

2. Description of the MPD

The MPD is a compact, lidar-based, eye-safe (class 1M),
water vapor active remote sensing system that utilizes a com-
mercially available micropulse laser (Spuler et al. 2015, 2021).
The diode-laser based transmitter of the MPD instrument
allows for a low-cost and continuous unattended operation,
which differentiates MPD from existing water vapor profiling
instruments. The transmitter of MPD generates pulses of two
tunable wavelengths around 828 nm (Spuler et al. 2015). The
online wavelength is located near the center of the water
vapor absorption line, and the offline wavelength is chosen to
be close in wavelength to the online (within 0.1 nm) but where
it is minimally affected by water vapor. The ratio of returned
online and offline signals and the timing of the return pulses
give range-resolved water vapor transmission which can be
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solved for water vapor number density or absolute humidity.
The elapsed time between transmitting and receiving back-
scattered laser pulses determines the vertical range resolution
of the MPD. The switching frequency between online and off-
line wavelengths determines the capability of the MPD to re-
solve the variability of the atmospheric water vapor in the
vertical. The vertical range of MPD is primarily affected by
the collection efficiency of the receiver that is a function of
field-of-view and collection area (Spuler et al. 2015). In this
OSSE study, the water vapor profiling of the MPD ranges
from 300 m to 4 km AGL. This range is based on an intercom-
parison test between radiosondes and MPDs (Spuler et al.
2015; Weckwerth et al. 2016; Stillwell et al. 2020). Typical
processed MPD data has a 150-m vertical resolution and
5-min temporal resolution. During daytime and cloudy condi-
tions, the vertical range and resolution can be degraded
because the high background signal can saturate the photon-
counting receiver leading to large errors in retrievals of water
vapor profiles (Spuler et al. 2015). However, the current
OSSE uses the same MPD configuration for daytime, cloudy,
nighttime, and clear sky conditions as a first trial to evaluate
the MPD observation impact. The detailed design and specifi-
cations of the NCAR water vapor MPD instrument are
described in Spuler et al. (2021).

One MPD instrument was autonomously operated at the
PECAN field campaign from 1 June to 15 July 2015. The
MPD provided continuous water vapor profiling data for 95%
of the entire experimental period without performance loss.
Recent efforts have been under way to develop additional
MPD sensors, to now have a network of five instruments
while extending the MPD architecture to incorporate aerosol
properties and temperature profiling (Hayman and Spuler
2017; Stillwell et al. 2020). In this study, we consider a simu-
lated network of MPDs that are hypothetically collocated
with rawinsonde sites. In addition, OSSE experiments are
conducted to determine the optimal density and spacing of

MPD sites to support a nationwide network of MPD sensors
to improve QPF skill.

3. Description of the OSSE framework

a. Case description: 15 July 2015

This study focuses on a nocturnal convection event that oc-
curred on 15 July 2015 during the PECAN field campaign.
Nocturnal elevated convection is less skillfully predicted than
surface-based daytime convection; this is partially attributed
to challenges with predicting elevated nocturnal convection
initiation (Stelten and Gallus 2017; Johnson et al. 2018). Part of
the issue is the lack of vertically resolved observations of mois-
ture in the lower atmosphere and difficulties detecting sources of
convective updrafts above the nocturnal stable surface layer at
night (Weckwerth et al. 2019). In this study, we assess the impact
of assimilating MPD observations on the prediction of a noctur-
nal mesoscale convective system (MCS). Here we focus on de-
termining how an improved representation of the lower- to
midlevel water vapor improves the prediction of elevated noctur-
nal convection initiation and its subsequent upscale growth into
a high-impact MCS event.

Figure 1 shows the evolution of the nocturnal convection
event using a composite radar reflectivity mosaic developed at
NCAR (Dixon 2016). Convective cells developed after sunset
in eastern Colorado on 14 July 2015 (not shown in figure).
The cells organized into an MCS in eastern Colorado around
0200 UTC 15 July 2015 and propagated eastward (Fig. 1b).
An outflow boundary was observed ahead of the MCS in
northwestern Kansas at 0300 UTC (Fig. 1c). As the evening
advanced, nocturnal convection developed along the outflow
boundary of the MCS and merged with the MCS after 0300
UTC 15 July 2015 (Fig. 1). New convective cells developed
along the outflow boundary after 0300 UTC and along the
southern convergence zones, possibly caused by a bore, after
0600 UTC. The MCS propagated northeastward during its

FIG. 1. (a)–(h) Evolution of the 15 Jul 2015 nocturnal convection event from composite reflectivity (dBZ). The black arrow in
(c) indicates an outflow boundary (Available online at https://doi.org/10.5065/D6QR4VHM.)
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upscale growth and reached maximum intensity and size in
western Kansas and southwestern Nebraska at 0800–1000
UTC (Figs. 1f,g). Large-scale features and weather conditions
were favorable for convective development after sunset on
14 July 2015. As a ridge amplified over the Great Plains at
500 hPa at 0300 UTC 15 July (Fig. 2a), a southerly low-level
jet (LLJ) developed across western Oklahoma and Kansas
(Fig. 2b). The LLJ interacted with the synoptic boundary over
southern Nebraska (shear line) to develop large-scale isen-
tropic ascent over southern Kansas (Figs. 2a–c). The northern
terminus of the LLJ enhanced mesoscale convergence in
southwestern Kansas, and a sharp drop of temperature was
found west of the convergence areas (Fig. 2c). Radiosonde
sounding at a mobile PECAN integrated sounding array
(PISA) (MP) site, ahead of the leading edge of the MCS,
showed significant instability and a most unstable convective
available potential energy (MUCAPE) of 1800 J Kg21at
700 hPa (Fig. 2d), indicating the possibility of elevated con-
vection initiation. In addition, detailed analysis of this case
(Grasmick et al. 2018) suggested a potential key role of the
convergence zones in the southern portion of the MCS to
maintain the convective system (Fig. 1f).

b. Description of the model and data assimilation
system (WRF-DART)

In this study, we run the Advanced Research version of the
Weather Research and Forecasting (WRF-ARW) Model ver-
sion 4.2.1 (Skamarock et al. 2008; Powers et al. 2017) to simu-
late nocturnal convection for the OSSEs. Three domains of
dimensions 212 3 160 (D1), 411 3 321 (D2), and 744 3 655
(D3) are used for the simulation with horizontal grid spacings
of 15, 3, and 1 km, respectively (Fig. 3). All domains have
71 vertical levels with the model top at 50 hPa with finer verti-
cal grid spacing within the lower troposphere (Fig. 3b). The
summary of model configurations for the nature run and the
DA runs are presented in Table 1.

For DA, the ensemble adjustment Kalman filter (EAKF;
Anderson 2001) system based on the DA Research Testbed
(DART; Anderson et al. 2009) was used to perform the
OSSEs on the 15-km (D1) and 3-km domain (D2). We did
not assimilate observations on the 1-km domain (D3). This
system has been applied to numerous convective-scale DA
studies (Kerr et al. 2019; Keclik et al. 2017; Pan et al. 2018;
Schwartz et al. 2015a, 2019). Ensemble Kalman filter–based
DA methods generally employ both covariance localization

FIG. 2. ERA5 reanalysis of (a) 500-hPa geopotential height (m; black solid contours) and winds (m s21; color fill
and barbs); (b) 875-hPa winds (m s21; color fill and barbs), 2-m temperature (K; red contours), and divergence (s21;
positive: black contours; negative: black dashed contours); (c) height–latitude cross section of potential temperature
(K; color fill) along the black dotted line A–B in (b); and (d) radiosonde sounding at MP3 valid at 0300 UTC 15 Jul
2015. The thick dashed black contour in (b) represents the location of a synoptic boundary, the dashed green
circle in (b) indicates the approximate LLJ terminus, and the red dot in (b) indicates the MP3 site.
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and inflation techniques owing to sampling error due to a lim-
ited ensemble size and to account for misrepresentation of
model error, as these aspects can otherwise degrade the qual-
ity of the analysis and subsequent forecast. In this study we
applied a covariance localization technique to all assimilated
observations using the Gaspari and Cohn (1999) function to
reduce the impact from spurious correlations. The localization
technique tapers the analysis increment to zero if the distance
between a grid point and an observation is larger than a speci-
fied threshold; here we used 300 km in the horizontal distance
and ∼2 km in the vertical distance for both the outer (D1) and
inner domain (D2). The horizontal and vertical cutoff radii of
localization were determined by experimentation to minimize
the analysis error averaged over the first 8 cycles for the outer
domain (D1; results not shown). These localization radii are
comparable with previous convective scale DA studies (e.g.,

Degelia et al. 2019; Coniglio et al. 2019). To maintain compa-
rable values of ensemble spread and the error of the ensemble
mean, a three-dimensional multiplicative inflation factor is ap-
plied to the DART EAKF system. The inflation relaxes the
posterior ensemble spread to be 85% of the priori ensemble
spread (Anderson and Anderson 1999; Whitaker and Hamill
2012). Surface and MPD observations are assumed to be
available every 15 min, rawinsonde observations are assumed
to only be available at 0000 UTC (Fig. 3c).

c. Generation of the nature run

In an OSSE study, a nature run is a numerical simulation
that is assumed to be the “true” state of the atmosphere
(Zeng et al. 2020). The nature run in this study was selected
as it best resembled the targeted phenomena in terms of the
initiation and evolution of the convective system described in

FIG. 3. (a) Nested model domains and horizontal distribution of conventional observations, (b) geopotential height (m)
against vertical model levels, and (c) time series of total number of observations summed up over each DA cycle.
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section 3a. Synthetic observations are then drawn from the na-
ture run and are provided to the DA system. To generate the na-
ture run, we conducted ensemble predictions using randomly
perturbed initial conditions and boundary conditions to generate
a 40-member ensemble at 1-km horizontal resolution. The con-
figuration of the numerical simulation is described in section 3b
and summarized in Table 1. The initial and lateral boundary per-
turbations were obtained from a multivariate normal distribu-
tion whose covariance is the pregenerated static forecast error
covariance of the WRF 3DVAR (Barker et al. 2004; Torn et al.
2006; Wang et al. 2008). These random perturbations are added
to the European Centre for Medium-Range Weather Forecasts
(ECMWF) fifth-generation climate reanalysis (ERA5) to gen-
erate initial conditions (ICs) and lateral boundary conditions
(LBCs) for the 15-km ensemble predictions. These ICs and
LBCs are downscaled to the inner domains (D2 and D3) for
the 3- and 1-km ensemble predictions, similar to Schwartz
et al. (2015b). The ensemble prediction is initialized at
1200 UTC 14 July 2015 and integrated for 24 h valid at
1200 UTC 15 July 2015. We first evaluated the 40 members of
the 1-km ensemble prediction according to objective and sub-
jective criteria, then selected the best-performing member as
the nature run. We also selected the worst-performing 3-km
member to improve by assimilating the simulated observa-
tions (hereafter referred to as free run).

To meet an objective criterion for the selection, we applied
the method for object-based diagnostic evaluation (MODE;
Davis et al. 2006a,b, 2009) to the radar reflectivity of ensem-
ble member predictions. MODE is a spatial verification
method that can be applied to identify and match forecast and
observed objects. When object pairs from the prediction field

and the observed field are identified, a fuzzy logic algorithm
computes statistics of the similarities of the objects in the
two datasets (Davis et al. 2006a,b, 2009). The MODE method
can also be applied to select meteorological fields that have
coherent spatial structure such as precipitation, clouds, and
composite reflectivity (Davis et al. 2006a,b, 2009; Ahijevych
et al. 2009; Clark et al. 2016). In this study, the process of se-
lecting the nature run and free run by applying MODE is as fol-
lows: 1) the degree of similarity between the observed
composite radar reflectivity field with each ensemble member
prediction reflectivity field is assessed in terms of the intensity,
shape, location, and timing of the convective system from 0000
UTC to 1200 UTC July 2015 every 1 h; and 2) based on a time-
averaged similarity score from the MODE results, the five mem-
bers with the highest scores (hereafter referred to as “good
members”) and five members with the lowest scores (hereafter
referred to as “bad members”) were selected. Figure 4 shows
the time-averaged MODE similarity score of ensemble mem-
bers. 3) As a first attempt to explore the impact of MPD on
convective weather predictions, the convection initiation of
the target event is the major concern for this study. Therefore,
among the “good members,” the one member that simulates
the best timing of the convection initiation was subjectively
selected as the nature run. Likewise, the member that was
least able to represent the observed timing of the convection
initiation and forecast evolution of the convective system was
selected as the free run from among the “bad members.” A
comparison of the real observations, nature run, and free run
illustrating the evolution of the MCS is shown in Fig. 5.

The nature run should have similarities with actual atmo-
spheric states regarding the evolution of the MCS and the

TABLE 1. Experiment configuration for the nature run, free run, and DA runs.

Nature run Free run DA runs

Domain 15/3/1 km 15/3 km 15/3 km

ICs/BCs ECMWF ERA5 ECMWF
ERA5

ECMWF ERA5/perturbed using
statistic forecast error covariance

Physics parameterization
Microphysical parameterization Thompson microphysics

(Thompson et al. 2008)
Thompson Thompson

Cumulus parameterization Kain–Fritsch (Kain and Fritsch
1990, 1993; Kain 2004; only
for outer domain)

Kain–Fritsch
(D1 only)

Kain–Fritsch
(D1 only)

PBL parameterization Mellor–Yamada–Janjić (MYJ)
(Janjić 2002)

MYJ MYJ

Land surface model
parameterization

Noah land surface model
(Chen and Dudhia 2001)

Noah Noah

Longwave radiation
parameterization

Rapid Radiative Transfer
Model for Global Climate
Models (RRTMG; Mlawer
et al. 1997; Iacono et al. 2008)

RRTMG RRTMG

Shortwave radiation
parameterization

RRTMG RRTMG RRTMG

Data assimilation No No EAKF/conventional observations
(surface, rawinsonde), MPD
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surrounding environment (Hoffman and Atlas 2016). There-
fore, we have conducted additional verifications for the na-
ture run. Figure 6a is the 875-hPa winds and convergence
fields from the nature run similar to Fig. 2b. The nature run
shows consistent environmental features with the ERA5 re-
analysis, representing a well-developed synoptic boundary
and the LLJ terminus in northern Oklahoma which is lo-
cated south of the ERA5 reanalysis LLJ terminus location
(Fig. 2b).

To evaluate the temporal evolution of the features related
to the MCS from the nature run, we compare the time series
of temperature and water vapor mixing ratio from the nature
run and AERI profiling data at the PECAN fixed PISA sta-
tion 3 (PS3) at Ellis, Kansas (black dot in Fig. 6a). Although
there are detailed differences between the nature run and
AERI, the nature run accurately represents the diurnal evolu-
tion of the thermodynamic states compared to the AERI pro-
files. In particular, the timing, magnitude and vertical extent

FIG. 4. The temporal-averaged values of the similarity score from MODE for each ensemble
member between 0000 UTC 15 Jul and 1200 UTC 15 Jul 2015. The green line represents the
averaged MODE for all the 40 ensemble members.

FIG. 5. Composite reflectivity (dBZ; color fill) of the nocturnal convection event from 0100 to 0700 UTC 15 Jul 2015 with 2-h intervals
of (a)–(d) radar observations, (e)–(h) nature run, and (i)–(l) free run. The black dots represent the location of radiosonde sites.
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of the heating associated with the growing daytime convective
boundary layer are consistent between AERI and the nature
run. Furthermore, the depth of the water vapor reaching ∼2 km
after 0300 UTC is consistent, demonstrating the accuracy of the
nature run to simulate the preconditioning of the MCS.

Previous studies have shown that increasing the resolution
of numerical simulations is a critical factor to better represent
convection initiation (Schumacher 2015; Tang and Kirshbaum
2020). To consider the model error associated with model res-
olution, we use higher resolution for the nature run (1 km)
than the free run and DA runs (3 km). Despite this change in
resolution, the nature run and DA runs have the same config-
uration of physical parameterizations (Table 1), resulting in
near identical twin problems of OSSE (Privé and Errico
2013). Therefore, it is noted that the positive impact of assimi-
lating the simulated MPD profiles in this OSSE study can be
exaggerated compared to the impact of assimilating real MPD
observations.

d. Simulated observations and their errors

Simulated MPD water vapor profiling observations and
conventional observations including rawinsonde data and sur-
face station data are assimilated in this study. To obtain the
synthetic observations for the OSSE, fields of observable vari-
ables in accordance with these instruments are extracted from
the nature run, and random noise is then added to each simu-
lated observation based on the magnitude of typical real-data
observation errors. The random noise errors are drawn from
a Gaussian distribution with zero mean and standard devi-
ation equal to the observational errors that are further de-
scribed below.

To synthesize absolute humidity profiling data of MPD, the
set of WRF state variables of the nature run are used follow-
ing Eqs. (1) and (2):

rd 5
P

RdT 1 1
r

Rd/Ry

( ) , (1)

ry 5 rrd, (2)

where ry is the absolute humidity, rd is the density of dry air,
r is the water vapor mixing ratio, T is temperature (K), P is
pressure (Pa), and Rd/Ry is a gas constant for dry/moisture air.
The MPD water vapor profiling data are assumed to be collo-
cated with operational radiosonde sites during the experimen-
tal period (Fig. 3a). Because the radiosonde provides high
vertical resolution water vapor profiling data that is routinely
assimilated by operational NWP in this region of the United
States, a comparison of radiosonde and MPD deployed at the
same sites will reveal the benefits of the MPD as a potential
candidate for continuously sampling water vapor profiling ob-
servation networks. As described in section 2, the MPD water
vapor profiles assimilated in the study extend from 300 m to
4 km AGL with 150-m vertical resolution and a 5-min tempo-
ral resolution. It is noted that new hardware improvements
have been made for the MPD to extend the lowest range
down to 225 m AGL (Spuler et al. 2021).

In DA, the specified observation error determines the rela-
tive weight between an observation and background state, so
estimation of an appropriate observation error and its covari-
ance matrix is a critical factor in the successful assimilation of
new observations. The observation error used in a DA system
consists of an instrument error and representativeness error,
where instrument error is typically much smaller than the
representativeness error magnitude (Geer and Bauer 2011;
Janjić et al. 2017). The algorithm of the MPD photon-counting
system provides an instrument error profile for each observing

FIG. 6. (a) 875-hPa winds (m s21; color fill and barbs) and convergence (s21; black dashed contour) of nature run valid at 0300 UTC
15 Jul 2015, and time series of temperature from (b) AERI and (c) nature run, and water vapor mixing ratio from (d) AERI and (e) nature
run from 1200 UTC 14 Jul to 0600 UTC 15 Jul 2015. The thick dashed black contour in (a) represents the location of a synoptic boundary
and the dashed green circle indicates the approximate LLJ terminus. The black dot represents the location of PECAN fixed PISA station 3
at Ellis, KS, where the time series of the observations and nature run are calculated in (b)–(e).
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time (Spuler et al. 2015). The error is a function of instrument
parameters, atmospheric parameters, overlap function for re-
ceiver channels of the instrument, backscatter coefficients and
water vapor number density. The temporal average of the in-
strument error profiles during the PECAN experiment is
shown in Fig. 7b. The increasing error with height is related to
strong backscatter gradients and low signal-to-noise ratio,
while MPD observation confidence is also reduced near opti-
cally thick clouds in the analysis. The representativeness error
component of the observation error is accounted for by multi-
plying an inflation factor to the instrument error, and the net
observation error is calculated by adding the instrument error
and representativeness error, similar to the estimation of the
AERI observation error (Degelia et al. 2019). The only differ-
ence relative to Degelia et al. (2019) is that here we use a cons-
tant inflation factor with height rather than a linearly
increasing inflation factor with height. Through a trial-and-
error process varying the inflation factor from 1.0 to 3.0, we
choose an inflation factor of 1.5 which was found to result in
the best performance with this set of DA experiments and as-
sociated predictions. The resulting total observation error is
used to generate the simulated observations and assimilate the
simulated observations. Future studies will explore a more so-
phisticated method of estimating the MPD water vapor profil-
ing observation error using time-averaged comparisons of
observations and corresponding model backgrounds collected
over a significantly longer period following several previous
studies (Hollingsworth and Lönnberg 1986; Desroziers et al.
2005; Bormann and Bauer 2010).

For the conventional observations, we choose the same loca-
tion, spatiotemporal resolution, and variables of the conven-
tional observations from the real global telecommunication
system (GTS) data. The distribution and number of conventional
observations assimilated in this study are shown in Fig. 3c. Note

that the DA system also takes into account radiosonde drift dur-
ing ascent. Because the conventional observations are routinely
assimilated in operational DA systems, such as with Gridpoint
Statistical Interpolation (GSI), we similarly assimilate simu-
lated conventional observations using predefined observation
error statistics provided by the GSI software (Shao et al. 2016;
Hu et al. 2018).

e. Data assimilation experimental design

For the DA experiments, ICs and LBCs for ensemble pre-
dictions are generated by adding 50 initial ensemble perturba-
tions to the free run at the beginning of the DA cycles valid at
1200 UTC 14 July 2015. The initial and lateral boundary en-
semble perturbations for the outer domain (D1) are sampled
from the static forecast error covariance available as part of
the WRF 3DVAR system in the same manner as described in
section 3b. These 15-km perturbed state fields were down-
scaled to the one-way nested 3-km inner domain to create en-
semble perturbations of ICs for the inner domain (D2) as
well. The initial ensemble conditions are then integrated for
3 h, and the 3-h ensemble prediction provides the background
ensemble for DA of the conventional observations including
surface station data and rawinsonde data starting from 1500 UTC
14 July 2015 to 0000 UTC 15 July 2015 with 3-hourly inter-
vals on both D1 and D2 (Fig. 8). Rawinsonde and surface
observations are assimilated within 1.5 h of the analysis time
for 3-hourly DA cycles. After 0000 UTC 15 July, four sets of
DA experiments with 15-min intervals, described in Table 2,
are conducted to evaluate the effect of different combinations
of observations on the nocturnal convection prediction. Con-
ventional and MPD observations within 7.5 min from the
analysis time are assimilated for 15-min DA cycles. DA_sfc
experiment assimilates conventional surface station data in-
cluding surface wind, temperature, specific humidity, and

FIG. 7. (a) Time–height plot for actual MPD data (g m23) during the PECAN field campaign and (b) nature run of
absolute humidity (g m23; black solid contour), simulated MPD absolute humidity observation (g m23; black dotted
contour), standard deviation of the MPD instrument error (g m23; red solid contour), and standard deviation of the
MPD observation error (g m23; red dotted contour) profile averaged for the duration of the PECAN field campaign.
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pressure observations. DA_sfc1sUTP experiment, where the
second lowercase “s” represents rawinsonde sounding profiles,
assimilates conventional surface observations and rawinsonde
wind, temperature, and pressure profile data. To discern the im-
pact of water vapor profile data on the nocturnal convection
prediction, two additional experiments, DA_sfc1sUTP1sQ and
DA_sfc1sUTP1mQ, assimilate the rawinsonde specific hu-
midity profile data or the MPD absolute humidity profile data
in addition to DA_sfc1sUTP experiment, respectively. Lower-
case “m” in DA_sfc1sUTP1mQ represents the MPD in-
struments. The MPDs are collocated with the operational
rawinsondes so the comparison of DA_sfc1sUTP1sQ and
DA_sfc1sUTP1mQ serves to facilitate the understanding of
the impact of higher spatiotemporal resolution of MPD water
vapor profiles compared to rawinsonde data.

4. Comparison of the impact of conventional water
vapor rawinsonde data versus continuous MPD
profiling data

a. Overview of the analysis and prediction

In this section, we evaluate the overall impact of the MPD
water vapor profiles on the analysis and subsequent predic-
tion in terms of precipitation prediction performance relative
to the nature run. Figure 9 shows the prediction evolution of
reflectivity fields from the nature run and free run and the re-
flectivity prediction obtained when using the ensemble mean
analyses for all DA experiments to initialize all DA

experiments at 0300 UTC 15 July. DA experiments assimilat-
ing conventional observations show similar features to each
other in terms of convection initiation and evolution. All pre-
dictions struggle to accurately simulate the convection and
subsequent evolution near the Colorado–Kansas border (la-
beled “extended MCS” in Fig. 9u) during the early prediction
lead times (Figs. 9i,m,q). Consequently, the predictions of
DA_sfc, DA_sfc1sUTP, and DA_sfc1sUTP1sQ show that
the location of the MCS is too far north compared to the na-
ture run after 0600 UTC 15 July (Figs. 9j–l,n–p,r–t). These re-
sults imply that assimilation of conventional surface station
observations and rawinsonde observations with or without
moisture profiles has little impact on the convection initiation
prediction across the Colorado–Kansas border region in this
case study. On the other hand, assimilating MPD improves
the prediction of convection initiation and the development
of a more organized convective structure within the south-
ern part of the system compared to the other three DA ex-
periments. Additional convection initiation is predicted in
DA_sfc1sUTP1mQ over southwest Kansas between 0400
and 0900 UTC (Figs. 9u–w) that is not evident in the other DA
experiments. Thereafter, predictions from DA_sfc1sUTP1mQ
qualitatively show improved depiction of the location and
structure of the predicted MCS as compared with that ob-
tained in the other three DA experiments (Figs. 9u–x). We
will primarily analyze these two convection events improved
by the MPD DA; 1) the MCS extension into southwestern
Kansas (Fig. 9u) and 2) newly initiated convection cells in
southeastern Kansas (Fig. 9v).

Next, the 1-h accumulated precipitation predictions are
compared through a time series of fractions skill score (FSS)
over the D2 domain (Fig. 10). FSS is a neighborhood-based
method for assessing spatial patterns in precipitation predic-
tions (Roberts and Lean 2008). FSS has been widely used
to quantify QPF of convection-permitting NWP models
(Romine et al. 2013; Wilkinson 2017) because FSS can mitigate
for the double-penalty problem in verifying the performance
of high-resolution models (Nurmi 2003; Roberts and Lean
2008). Since all experiments show consistent patterns of FSS

TABLE 2. Experimental configuration for DA runs. Abbreviations:
“U” is horizontal wind, “T” is temperature, “P” is pressure, and
“Q” is water vapor of either “s” (sounding specific humidity) or “m”

(MPD absolute humidity).

EXP Surface Upper air UVTP Upper air Q

DA_sfc Yes No No
DA_sfc1sUTP Yes Rawinsonde No
DA_sfc1sUTP1sQ Yes Rawinsonde Rawinsonde
DA_sfc1sUTP1mQ Yes Rawinsonde MPD

FIG. 8. Schematic illustration of the DA procedures.
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with neighborhood radii varied across a range from 9 to 48 km
(not shown), we hereafter discuss the FSS with a 24-km neigh-
borhood for light (0.5 mm h21) and heavy (5 mm h21) precipi-
tation thresholds. Assimilating MPD water vapor profiles
results in the highest skill scores for both light and heavy

precipitation predictions after 2-h prediction lead times. This
is subjectively attributed to a more accurate prediction of the
southward extension of the MCS and the new convection
initiation in southwestern Kansas compared to the other
DA experiments and free run (Fig. 9). Figure 10 shows that

FIG. 9. Predictions of composite reflectivity for (a)–(d) nature run, (e)–(h) free run, (i)–(l) DA_sfc, (m)–(p) DA_sfc1sUTP,
(q)–(t) DA_sfc1sUTP1sQ, and (u)–(x) DA_sfc1sUTP1mQ initialized at 0300 UTC 15 Jul 2015. The overlaid solid red lines rep-
resent reflectivity of nature run greater than 30 dBZ. The solid black box in (a) indicates the averaging regions for the profiles in Fig. 16.
The dashed black line A–B indicates the location for the height–longitude cross section in Fig. 15. The black arrows in (u) and (v) indicate
the extended MCS and new convection initiation of interest, respectively.
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DA_sfc1sUPT and DA_sfc1sUTP1sQ have similar FSS
over the entire forecast lead times, with DA_sfc showing
slightly lower scores after 5 h (i.e., 0800 UTC). This assimila-
tion of the rawinsonde profiles improves the longer range pre-
cipitation prediction compared to assimilating only surface
data (Fig. 10).

b. Observation impacts on the dynamic and
thermodynamic environment

As noted before, none of the DA experiments except for
DA_sfc1sUTP1mQ are able to represent the evolution of
precipitation associated with the southern part of the MCS
over southwestern Kansas (Fig. 9u) and the convection initia-
tion (Fig. 9v). In this section, we investigate how and why the
assimilated MPD water vapor profiles led to the improvement
of precipitation predictions compared to predictions from the
other DA experiments. Previous studies have shown that the
key ingredients for the development of deep convection are a
sufficient moist layer in the low-to-mid troposphere, condi-
tional instability, and a lifting mechanism to allow parcels to
attain free convection (Johns and Doswell 1992; Holley et al.
2014); therefore, we investigate how MPD DA impacts these
three contributions to the extended MCS (Fig. 9u) and con-
vection initiation (Fig. 9v) for this case.

Figure 11 shows 850-hPa wind and its divergence analysis
fields at 0300 UTC 15 July 2015. As the convective system
moves to the east, the nature run illustrates a well-developed
boundary layer convergence zone across the leading edge of
the MCS (Fig. 11a) which is consistent with Figs. 1c and 2b.
Elevated nocturnal convection occurs within a broader region
of mesoscale lifting associated with the convergence zone
within the nature run (Fig. 9a). The free run displaces a much
weaker convergence zone to the east compared to the nature
run (Fig. 11b). All DA experiments show similar location and
structure of divergence fields with the nature run yet they all
exhibit weaker divergence and convergence (Figs. 11c–f). As-
similation of surface station data plays an important role in
improving the winds across west Kansas to be more easterly
(Figs. 11b,c), but it does not improve the strength of the con-
vergence. Assimilating MPD water vapor profiles modestly

enhances the convergence across west-central Kansas relative
to the other DA experiments. The feedback between water
vapor profiles by MPD and surrounding dynamic fields may
contribute to improving the longer-range convection predic-
tion over southwestern Kansas in the MPD DA experiment
compared to other DA experiments (Figs. 9u,v).

Deep convection can be triggered by lifting a volume of air
above its level of free convection. Because the lift from hori-
zontal convergence is determined by the vertically integrated
convergence, the vertical profiles of the convergence ahead of
the cold pool are calculated over the box shown in Fig. 11a
(Fig. 12). The nature run has stronger convergence than the
other simulations below 2 km mean sea level (MSL) with a
maximum around 1 km MSL. It is noted that the strong ele-
vated horizontal convergence is favorable for elevated noctur-
nal convection. Assimilating a combination of surface station
observations and rawinsonde profiles without moisture
(DA_sfc1sUTP) leads to stronger convergence compared to
assimilating only surface station data (DA_sfc) below 2 km
MSL. While the moisture profiles of the rawinsonde
(DA_sfc1sUTP1sQ) have little positive observation impact
on the convergence profiles except for below 1.2 km MSL
compared to DA_sfc1sUTP, MPD water vapor profiles
(DA_sfc1sUTP1mQ) improve the convergence field below
1.6 km MSL. Combined with the horizontal fields of the con-
vergence (Fig. 11), the vertical profiles of convergence imply
that assimilation of MPD profiles has a positive impact on the
lifting ingredient associated with convergence in the lower at-
mosphere ahead of the MCS but still produces much less con-
vergence than that shown for the nature run.

Figure 13 shows the integrated precipitable water (PW) and
850-hPa wind analysis at 0300 UTC 15 July. The nature run
shows a frontal boundary along the border between Oklahoma
and Kansas, where the 850-hPa wind direction changes
sharply and where there is a maximum in PW. North of the
frontal boundary, the nature run exhibits southeasterly winds.
These winds play an important role in transporting water
vapor from northeastern Oklahoma to western Kansas and
supplying water vapor to the convective system (Fig. 13a).
On the other hand, the frontal boundary and associated

FIG. 10. Fractions skill score calculated with a 24-km neighborhood for rain rates of (a) 0.5 and (b) 5 mm h21.
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easterly wind field are not represented by the free run
(Fig. 13b). Assimilation of the surface station data improves
the easterly component of winds compared to the free run
near the frontal boundary (Fig. 13c). The other DA experi-
ments also produce similar wind structures associated with
the frontal boundary primarily owing to corrections by assim-
ilating the surface station observations (Figs. 13d–f).

Consistent with the positive contribution from the surface
station data on the low-level wind analysis, assimilating sur-
face station data improves the location of the maximum PW
region compared to the free run (Figs. 13b,c). However, there
remains an underestimation of the amount of vertically inte-
grated water vapor compared to the nature run (Fig. 13c). It
is notable that assimilation of rawinsonde profiles added to
the surface station data have a minimal effect on the PW

analysis (Figs. 13d,e). Contrary to the rawinsonde results, the
additional information provided by assimilating continuous
MPD profiles best represents the horizontal structure and the
placement and magnitude of the maximum PW (Fig. 13f).
Rawinsonde water vapor profiles, which have a higher verti-
cal depth and resolution than MPD, are available just
once and at the beginning of the DA cycles (Fig. 3b).
Compared to rawinsonde profiles, the improvements by
assimilating MPD profiles imply that frequent and continu-
ous updating of water vapor profiles is likely more effective
in correcting rapidly changing water vapor fields than up-
dating higher vertical resolution water vapor profiles from
the rawinsonde when that data are only available at a single
time. Figure 13g shows a time series of water vapor from
nature run, free run, and mean analysis of all DA experiments

FIG. 11. 850-hPa winds (vector; m s21) and divergence (color fill; 1025 s21) for (a) nature run, (b) free run, and ensemble mean analyses
of (c) DA_sfc, (d) DA_sfc_sUTP, (e) DA_sfc1sUTP1sQ, and (f) DA_sfc1sUTP1mQ valid at 0300 UTC 15 Jul 2015. The positive and
negative values indicate divergence (red) and convergence (blue), respectively. The solid black box indicates the location for the profiles
of divergence in Fig. 12.
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averaged over the D2 domain during DA cycles. The nature
run exhibits a continuous increase in vertically integrated mois-
ture (Fig. 13g), possibly due to a strengthening southeasterly
LLJ (not shown), over all of the DA cycles across western
Kansas and western Oklahoma. This may have contributed to
increasing storm-relative inflow and upscale growth of the con-
vective system (e.g., Carroll et al. 2021). The gap between the
nature run and DA_sfc1sUTP1mQ analysis decreases owing
to frequent cycles with repeated moisture profile observations,
while the gaps between the nature run and the other DA ex-
periments remain constant without these frequent moisture
profile observations (Fig. 13g). This result supports the poten-
tial benefits of frequent assimilation of continuous MPD water
vapor profiles on the water vapor analyses and subsequent
predictions.

Analyses suggest that there is a synoptic front to the north
of the LLJ terminus (Fig. 6a). Convection forms ahead of the
leading edge of MCS along the synoptic front to the west of
the LLJ terminus (Fig. 5f). Although all DA experiments rep-
resent similar surface wind analyses, MPD profiles enhance
the vertically integrated water vapor analysis to better match
the nature run. To further investigate the impact of MPD wa-
ter vapor profiles on the thermodynamic structure along the
front, zonally averaged height-latitude cross-sections of po-
tential temperature, water vapor mixing ratio and horizontal
wind analysis are examined (Fig. 14). The potential tempera-
ture of the nature run sharply increases with height north of
368N (Fig. 14a). The increase in the potential temperature
which is associated with warm frontal overrunning develops
to the north of the observed LLJ terminus (Fig. 6a) in the na-
ture run (Fig. 14a). The cross-section of the nature run implies
that the LLJ transports moist air upward reaching ∼1.8 km

AGL and extending further northward along the sloping isen-
tropic surface within the latitude range of 36.38 and 37.38N,
resulting in a favorable environment for the initiation and
subsequent evolution of deep, moist convection in the
region (Trier and Parsons 1993; Weckwerth et al. 2019).
Along the ascent path, water vapor mixing ratio increases by
20 g kg21 from the surface to 1.8 km AGL where easterly
flow is prevailing (Fig. 14a). In contrast, the isentropic ascent
and related water vapor enhancement are not represented by
the free run in the same region (Fig. 14b). Compared to the
free run, assimilating surface station data corrects the wind
structure and related vertical thermodynamic structure below
1.5 km AGL (Fig. 14c); however, moisture is constrained below
1.8 km AGL which is lower than the 2.2 km AGL in the nature
run (Fig. 14c). Assimilating rawinsonde data in addition to the
surface station data shows similar thermodynamic features to
assimilating surface station data alone (Figs. 14c–e). This result
therefore implies that the effect of rawinsonde data, which is
assimilated only at the beginning of the DA cycle in this study
(Fig. 3b), does not persist as DA cycles continue. Therefore,
the rawinsonde profiles are shown to have little impact on
the vertical structure of temperature and moisture analysis
(Figs. 14d,e). This result is consistent with the time series of
PW analysis in Fig. 13g. Conversely, the assimilation of the
MPD water vapor profiles increases the vertical depth of the is-
entropic surface to 2.1 km MSL and results in the transport
of moist air further upward compared to the other three DA
experiments (Fig. 14f). This DA_sfc1sUTP1mQ result is
more consistent with the nature run compared to the other
DA experimental results. Furthermore, results with MPD DA
also show a positive impact on representing the easterly compo-
nent of the horizontal wind analysis with increasing depth of
the moisture below 2.0 km AGL (Fig. 14f). The easterly
winds, which extend to 2.0 km MSL in the nature run, also
play an important role in transporting the elevated moist air
to the convectively active area ahead of the outflow boundary.

Figure 15 shows vertical cross sections of water vapor mix-
ing ratio from the nature run and difference fields between
the three DA experiments and the nature run at 0300 UTC
15 July 2015. The nature run shows elevated moisture at
around 2 km MSL in advance of the nocturnal convection
(Fig. 15a). Figures 15b–f show the difference fields compared
to the nature run. The free run has a prominent dry bias in ad-
vance of the region of the elevated convection (Fig. 15b). All
DA experiments reduce the dry bias below 2 km compared to
the free run (Figs. 15c–f). However, assimilating MPD water va-
por profiles minimizes the dry bias more substantially than the
DA experiments with other types of observations (Fig. 15f).
In contrast to the rawinsonde water vapor profiles (Fig. 15e),
assimilating MPD water vapor profiles improves the dry bias
in the water vapor analysis through a deeper layer (Fig. 15f).
At levels above 3 km, where the MPD lidar signal is relatively
weak and MPD observation error starts to increase sharply,
assimilation of MPD degrades the analysis in terms of bias
compared to assimilation of rawinsonde profiles (Fig. 15f).
The improved water vapor mixing ratio analysis in advance
of the convective region is attributed to the continuously
available MPD moisture profiles during the frequent 15-min

FIG. 12. Profiles of divergence (1025 s21) for nature run, free
run, and ensemble mean analysis of each DA experiment valid at
0300 UTC 15 Jul 2015. The dotted gray line indicates zero diver-
gence. The profiles are averaged over the black box in Fig. 11a.
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DA cycling. The improvement in the analysis extends to pre-
dictions of the vertical moisture structure (not shown) and
precipitation predictions (Figs. 9 and 10).

The MPD DA experiment leads to deep moist convection
that is more consistent with the nature run. Here we examine
how MPD DA leads to a more accurate evolution of the

MCS. Figure 16 shows vertical profiles of thermodynamic
fields in the region in advance of the MCS calculated over the
box shown in Fig. 9a. The temperature and convective inhibi-
tion (CIN) profiles (Figs. 16b,d), together with convergence
profiles (Fig. 12), are similar for all DA experiments showing
improvement relative to the free run. The water vapor mixing

FIG. 13. Precipitable water (color fill; kg m22) and 850-hPa winds (vector; m s21) for (a) nature run, (b) free run, and ensemble mean
analysis of (c) DA_sfc, (d), DA_sfc1sUTP, (e) DA_sfc1sUTP1sQ, and (f) DA_sfc1sUTP1mQ valid at 0300 UTC 15 Jul 2015.
(g) Time series of precipitable water vapor (kg m22) averaged over the inner domain (D02) calculated from the nature run, free run, and
ensemble mean analysis for each experiment. The solid white box in (a) indicates the averaging region for the height–latitude cross
sections in Fig. 14.
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ratio (Fig. 16a), dewpoint temperature (Fig. 16b) and CAPE
(Fig. 16c) are all impacted by assimilation of synthetic obser-
vations and are most improved by MPD DA. Because CAPE
is a measure that incorporates moisture and instability, these
results suggest that DA of MPD continuous water vapor pro-
files has the potential to markedly improve the moisture and
instability in the convective storm environment, especially in
midlevels in advance of the convection.

5. Additional effect of assimilating MPD data with
randomly fixed MPD sites with varying number
and distance

In the previous sections, we have collocated the MPD in-
struments with the operational rawinsonde sites and have ver-
ified the positive MPD impact of synthetic observations in
comparison to conventional surface station and rawinsonde
data for a case study. There are 45 rawinsonde sites within the
outer domain and 15 sites within the inner domain with a sep-
aration of ∼300 km (Fig. 3a). The MPD network examined in
this study, collocated at the rawinsonde sites, was shown to
improve the convective weather prediction skill. However,

prediction skill may be further improved by either more or fewer
MPD observing sites. To further investigate the observational ca-
pability of a future operational nationwide network of instru-
ments, we explore other potential configurations of an MPD
network to complement the operational observing network.

To investigate the impact of changing the horizontal spac-
ing of MPD sites, simulated MPDs are deployed at random
locations with a variety of distances and total site counts
from ∼600 MPDs with ∼70-km spacing to ∼30 MPDs with
∼380-km spacing within the outer domain (Fig. 17). The
strategy to build the randomly fixed MPD network is as fol-
lows. An initial site is randomly chosen in the outer domain
and a next site is randomly determined keeping a distance
(e.g., for the 600-site experiment of ∼70 km) from the previ-
ously chosen site. This process is repeated until the average
distance between all sites is less than the designated spacing.
This methodology is performed for each experiment with
spacing of 70, 130, 200, 270, 320, and 380 km. To ensure a
generalization in this random selection of the sites, the se-
lection process is performed 10 times with different sets of
randomly fixed MPD networks and the ten simulations are
averaged for each MPD spacing.

FIG. 14. Zonally averaged height–latitude cross section of water vapor mixing ratio (color fill; g kg21), potential temperature
(red contour; K), and horizontal wind (vector; m s21) for (a) nature run, (b) free run, and ensemble mean analysis of (c) DA_sfc,
(d), DA_sfc1sUTP, (e) DA_sfc1sUTP1sQ, and (f) DA_sfc1sUTP1mQ valid at 0300 UTC 15 Jul 2015. The cross sections are zonally
averaged over the white box in Fig. 13a. The black arrow in the upper right of (a) represents the direction of the horizontal wind vector.
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We compare the result of the 15 July case study with FSS
(Fig. 18). To evaluate a potential nationwide network of
MPDs, we broaden the verification region to the outer do-
main and increase sampling number for the verification over
the United States (Fig. 3a). As the MPD spacing increases
and the number of MPDs decrease, the experiments tend to
predict light precipitation better (Fig. 18a). However, the dif-
ference of skills between the MPD spacing of 200 km and less
are not statistically significant from the paired t test with a sig-
nificance level of 95% (not shown in figure). In contrast, as
the MPD spacing decreases, the MPD has more impact on in-
tense precipitation predictions except for the MPD spacing of
70 km (Fig. 18b). These contradictory results for different pre-
cipitation intensities imply that optimal spacing of MPDs is
dependent on the scale of precipitation events. Because the
intense convective precipitation results from complex multi-
scale interactions between the ambient flow and atmospheric
convection (Majumdar et al. 2021), denser network of MPDs

can resolve fine scale variability of intense convective precipi-
tation systems better than sparse MPD networks. The MPD
spacings of 130 km is the optimal spacing in terms of FSS of
convective precipitation for this case study and the difference
between the other experiments are statistically significant. It
is noted that MPD spacing of 70 km does not outperform the
MPD spacing of 130 km in precipitation predictions for all
forecast lead times and precipitation thresholds (Fig. 18). This
is likely because frequent assimilation of noisy MPD water va-
por profiles of increased density leads to an imbalance within
the analyses and causes subsequent degraded predictions. On
the other hand, light precipitation prediction is generally af-
fected by large-scale forcing such as cyclonic and frontal sys-
tems. Therefore, improving the light precipitation prediction
is mainly attributed to the more accurate analysis of the envi-
ronment and is achieved with MPD spacing of 200 km. Figure 19
shows the temporal evolution of surface pressure tendency
which is regarded as a measure of dynamic imbalance at

FIG. 15. (a) Height–longitude cross section of water vapor mixing ratio (color fill; g kg21) and wind (vector; m s21)
for the nature run, and differences between nature run and (b) free run, (c) DA_sfc, (d), DA_sfc1sUTP,
(e) DA_sfc1sUTP1sQ, and (f) DA_sfc1sUTP1mQ analysis along the line A–B in Fig. 9a valid at 0300 UTC
15 Jul 2015. The black triangle in (a) indicates the location of convection.
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synoptic scales (Lynch and Huang 1992; Lei et al. 2012; Zeng
et al. 2021). The surface pressure tendency calculated between
0- and 4-h predictions initialized at 0300 UTC 15 July is aver-
aged over the outer domain. Consistent with FSS for light pre-
cipitation results (Fig. 18a), the decreasing MPD spacing
results in larger values of surface pressure tendencies, indicat-
ing that assimilation of the high density water vapor profiles
leads to less dynamically balanced predictions at large scales.

In this study, only MPD water vapor profiles are assimi-
lated. Potentially, a network that additionally includes wind
and temperature profiling data in the lower atmosphere could
lead to more accurate analyses with less reliance on the en-
semble covariance structure to update other state variables
(Bannister et al. 2020). Inconsistent updates between the water
vapor and temperature analyses can cause spurious precipi-
tation forecasts and associated “spindown” (Sun et al. 2014;
Clark et al. 2016). Therefore, a network consisting of dense
MPD water vapor profiles and complementary temperature

and wind profiles is desired to improve precipitation prediction
of various scales (Hartung et al. 2011). In addition, the ensemble
DA system used in this study does not apply techniques to miti-
gate imbalance after DA, thus including an incremental analysis
update technique (IAU; Bloom et al. 1996; Lei and Whitaker
2016) or digital filtering initialization technique (DFI; Lynch and
Huang 1992) might lead to improved results.

Compared to the 3-km DA runs in section 4b, these results
in this section could be influenced by a mixture of the MPD
observation impact and the cumulus parameterization. There-
fore, it should be noted that these results could be dependent
upon the convection parameterization used in this study.

6. Comparison with the real MPD assimilation

During the PECAN field campaign, one MPD instrument
was operated at Ellis, Kansas (fixed point 3; FP3), shown in
Fig. 6a (Geerts et al. 2017). The insufficient spatial coverage

FIG. 16. (a) Profiles of water vapor mixing ratio (g kg21), (b) temperature (C), (c) CAPE (J kg21), and (d) CIN (J kg21)
valid at 0300 UTC 15 Jul 2015. The profiles are averaged over the black box in Fig. 9a.

MONTHLY WEATHER REV I EW VOLUME 1502804

Unauthenticated | Downloaded 11/15/22 09:40 PM UTC



of the one MPD instrument limits the ability to assess meaning-
ful impacts of the MPD data for this case study. But validity of
the OSSE results in this study can be further assessed by com-
paring results of assimilating the real MPD and simulated MPD
profiles at FP3. Therefore, we assimilate the real and simu-
lated MPD data from the FP3 site in addition to the observa-
tions of the DA_sfc_sUTP experiment (hereafter referred to
as “real_MPD” and “simulated_MPD” experiments).

Figure 20 shows the time series of the absolute humidity from
the real_MPD and simulted_MPD, and their root-mean-square
error (rmse) of analysis (O-A) and background (O-B) verified
against real and simulated MPD observations, respectively.

Overall, real MPD has higher absolute humidity than the simu-
lated MPD for all DA cycles, but the difference between them
decreases with the cycles. The sawtooth patterns of O-A and
O-B demonstrate the positive impact of the assimilation of
both real and simulated MPD observations. These results im-
ply that we can expect the positive MPD impact from assimi-
lating real MPD datasets with similar configurations with the
OSSE. However, it is noted that the background error and
its correction by the real MPD observations are larger than
the simulated_MPD. This is because the simulated_MPD
experiment has smaller discrepancy between the true state (or
nature run) and assimilated observations compared to the

FIG. 17. Randomly fixed observation network (blue dots). The distance between observation sites ranges from ∼70 to 380 km.

FIG. 18. As in Fig. 10, but FSS of randomly located MPD with fixed station distances.

K A Y E T AL . 2805OCTOBER 2022

Unauthenticated | Downloaded 11/15/22 09:40 PM UTC



real_MPD analysis. While continuous data assimilation in the
simulated_MPD experiment efficiently corrects the back-
ground toward the true state (or nature run), the data assimi-
lation of the real_MPD experiment generally includes larger
errors associated with observations and numerical models
than in the simulated_MPD. In particular, the identical twin
problem of the OSSE discussed in section 3 can exaggerate
the gap between simulated_MPD and real_MPD results.
These results imply that we can expect a positive MPD impact
from assimilating real MPD datasets with similar configura-
tions with the OSSE, but their observation impact may de-
crease compared to the OSSE result.

7. Summary and discussion

NCAR and MSU jointly developed the MPD, which meas-
ures continuous, unattended, and accurate water vapor pro-
files. In addition, MPD has economic advantages in operation
and manufacturing over several other water vapor profiling
instruments, and thus may be suitable as a future network of
instruments. To investigate the potential impact of a network
of MPD water vapor profiles on convective weather forecast-
ing, OSSEs are used to assimilate synthesized observational
networks that are composed of various combinations of MPD
profiles and conventional observations for a 15 July 2015 noc-
turnal convection case study. The NCAR MODE method is
first used to provide objective criteria defining the nature run
and free run from ensemble simulations for the OSSE.

It was found that the assimilation of frequent observations
of high-resolution water vapor profiles in the lower tropo-
sphere provided by MPD can improve analyses of the precon-
vective environment for improved prediction of nocturnal
convection. Surface station data are shown to be effective in
correcting the frontal structure and winds near the surface.
However, with DA of surface station data only, analyses
show a limitation in improving the inflow of water vapor in
the lower troposphere at ∼2–3 km AGL where elevated
convection can be rooted at night. Although rawinsondes
provide water vapor profiles extending to high altitudes, the

low temporal resolution of rawinsondes is shown to have lim-
ited benefit to improve atmospheric water vapor fields in the
vicinity of the nocturnal convective system. On the other
hand, MPDs, here collocated with the rawinsondes, provide
continuously updating water vapor profiles in the lower tropo-
sphere during each 15-min DA cycle. The MPDDA led to im-
proved water vapor analyses ahead of the convective area,
improving the representation of low-level convergence and in-
stability and resulting in a more accurate precipitation predic-
tion. Overall, DA of the MPD water vapor profiles led to
improved predictions of convection initiation, evolution and
precipitation of the MCS compared to the conventional obser-
vations for this particular case study.

To evaluate the impacts from the integrated DA efforts in-
cluding MPD and rawinsonde data, we also conducted a DA
run assimilating water vapor profiles from both the MPD and
sounding (DA_sfc1sUTP1sQ1mQ). DA_sfc1sUTP1sQ1mQ
and DA_sfc1sUTP1mQ show marginal differences in almost
all metrics used in this study (not shown), which is likely due
to the limited number of sounding data available at the begin-
ning of the DA cycles (Fig. 3b). This result is consistent with the
results showing the small difference between DA_sfc1sUTP
and DA_sfc1sUTP1sQ (Figs. 9–16). All these results demon-
strate the benefit of the high temporal resolution of MPD water
vapor profiles in the lower atmosphere that complement the
infrequent rawinsonde data.

Given the potential value of a nationwide network of water
vapor profiles to improve weather forecast skill, comparisons
were also performed to explore the impact of varied station
spacing for a network of MPD sites using an OSSE framework.
For this nocturnal case study, an MPD site spacing of 130 km
(200 km), which corresponds to 300 (100) MPD sites across the
outer domain, is found to be optimal in terms of intense (light)
precipitation prediction skill. In this study, a denser MPD
network than the current operational rawinsonde network
resulted in better skillful prediction of intense precipitation,
while a much sparser MPD network with greater than 200-km
spacing had significant impact on light precipitation predic-
tions for this event due to more balanced initial states.

This study is the first to explore the potential impact of an
MPD water vapor profiling network on the skill of convective

FIG. 19. Domain-averaged surface pressure tendency every 5 min
during the 4-h deterministic prediction starting at 0300 UTC
15 Jul 2015 over the D1 domain calculated from MPD spacings
of 70, 130, 200, 270, 320, and 380 km.

FIG. 20. A time series of absolute humidity (dotted line) and
rmse of analysis (O-A) and background (O-B) for absolute humi-
dity (solid line) for real MPD DA run (black line) and simulated
MPDDA run (red line) from 0000 to 0300 UTC 15 Jun 2015.
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weather predictions. As an initial investigation, the experi-
ment is limited by addressing the MPD observation impact
for a single nocturnal convection case. In this regard, further
studies are planned to expand OSSEs to more convective
cases to address the generality of these results. To determine
the optimal combination of thermodynamic and wind profiles
for improved convective weather forecasting, observation im-
pact studies of wind and temperature profiles from other re-
mote sensing instruments that can complement the MPD
water vapor profiles will be explored through OSSEs. It is
noted that the MPD effect in OSSEs could be exaggerated
compared to the actual MPD observation effect because we
underestimate model errors and overestimate observation er-
rors in OSSEs. In the future, the observation impact of assimi-
lating actual MPD water vapor profiles will also be
investigated. Since the error in the MPD has been substan-
tially reduced with a recent upgrade (Spuler et al. 2021), so-
phisticated methods to estimate more realistic observation
errors will be explored to investigate DA of actual MPD pro-
files (e.g., Bormann et al. 2011; Minamide and Zhang 2017).
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Zeng, Y., A. de Lozar, T. Janjić, and A. Seifert, 2021: Applying a
new integrated mass-flux adjustment filter in rapid update cy-
cling of convective-scale data assimilation for the COSMO
model (v5.07). Geosci. Model Dev., 14, 1295–1307, https://doi.
org/10.5194/gmd-14-1295-2021.

Zhang, F., M. Minamide, and E. E. Clothiaux, 2016: Potential im-
pacts of assimilating all-sky infrared satellite radiances from
GOES-R on convection-permitting analysis and prediction of
tropical cyclones. Geophys. Res. Lett., 43, 2954–2963, https://
doi.org/10.1002/2016GL068468.

}}, Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen,
and K. Emanuel, 2019: What is the predictability limit of
midlatitude weather? J. Atmos. Sci., 76, 1077–1091, https://
doi.org/10.1175/JAS-D-18-0269.1.

K A Y E T AL . 2811OCTOBER 2022

Unauthenticated | Downloaded 11/15/22 09:40 PM UTC

https://doi.org/10.1175/2008MWR2444.1
https://doi.org/10.1175/2008MWR2444.1
https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<2339:NNLTWV>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<2339:NNLTWV>2.0.CO;2
https://doi.org/10.1175/JTECH-D-16-0119.1
https://doi.org/10.1175/JTECH-D-16-0119.1
https://doi.org/10.1175/BAMS-D-18-0299.1
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/WAF-D-16-0106.1
https://doi.org/10.1175/WAF-D-16-0106.1
https://doi.org/10.1002/qj.752
https://doi.org/10.1002/qj.752
https://doi.org/10.1002/2014RG000476
https://doi.org/10.1002/2014RG000476
https://doi.org/10.1175/MWR3070.1
https://doi.org/10.1175/MWR3070.1
https://doi.org/10.1175/BAMS-D-19-0155.1
https://doi.org/10.5194/gmd-14-1295-2021
https://doi.org/10.5194/gmd-14-1295-2021
https://doi.org/10.1002/2016GL068468
https://doi.org/10.1002/2016GL068468
https://doi.org/10.1175/JAS-D-18-0269.1
https://doi.org/10.1175/JAS-D-18-0269.1

